学习贯彻党的二十届三中全会精神

海洋能

海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在于海洋之中。中国实海况海浪发电研制商产设备。技术人员可以对各种海浪发电机进行测试,并可将海浪发电机产生的电能通过液流运送到岸上,出售给消费者。

简介

海洋能是一种蕴藏在海洋中的可再生能源,包括潮汐能、波浪引起的机械能和热能。海洋能同时也涉及一个更广的范畴,包括海面上空的风能、海水表面的太阳能海里的生物质能。中国拥有18,000公里的海岸线和总面积达6,700平方公里的6,960座岛屿。这些岛屿大多远离陆地,因而缺少能源供应。因此要实现我国海岸和海岛经济的可持续发展,必须大力发展我国的海洋能资源。

地球表面积约为5.1×10^8km^2,其中陆地表面积为1.49×10^8km^2占29%;海洋面积达3.61×10^8km^2,以地平线计,全部陆地的平均海拔约为840m,而海洋的平均深度却为380m,整个海水的容积多达1.37×10^9km^3。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。

※海水温差能是一种热能。低纬度的海面水温较高,与深层水形成温度差,可产生热交换。其能量与温差的大小和热交换水量成正比。潮汐能、潮流能、海流能、波浪能都是机械能。潮汐的能量与潮差大小和潮量成正比。波浪的能量与波高的平方和波动水域面积成正比。在河口水域还存在海水盐差能(又称海水化学能),入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透,可产生渗透压力,其能量与压力差和渗透能量成正比。

能源特点

优点

1.海洋能在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。

2.海洋能具有可再生性。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。

3.海洋能有较稳定与不稳定能源之分。较稳定的为温度差能、盐度差能和海流能。不稳定能源分为变化有规律与变化无规律两种。属于不稳定但变化有规律的有潮汐能与潮流能。人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱。潮汐电站与潮流电站可根据预报表安排发电运行。既不稳定又无规律的是波浪能。

4.海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小。

缺点

获取能量的最佳手段尚无共识,大型项目可能会破坏自然水流、潮汐和生态系统。

该能量产生

潮汐能

潮汐能指在涨潮和落潮过程中产生的势能。潮汐能的强度和潮头数量和落差有关。通常潮头落差大于3m的潮汐就具有产能利用价值。潮汐能主要用于发电。

浪能

浪能指蕴藏在海面波浪中的动能和势能。浪能主要用于发电,同时也可用于输送和抽运水、供暖、海水脱盐和制造氢气

温差能

海水温差能是指海洋表层海水和深层海水之间水温差的热能,是海洋能的一种重要形

式。低纬度的海面水温较高,与深层冷水存在温度差,而储存着温差热能,其能量与温差的大小和水量成正比

温差能的主要利用方式为发电,首次提出利用海水温差发电设想的是法国物理学家阿松瓦尔,1926年,阿松瓦尔的学生克劳德试验成功海水温差发电。1930年,克劳德在古巴海滨建造了世界上第一座海水温差发电站,获得了10kW的功率。

温差能利用的最大困难是温差大小,能量密度低,其效率仅有3%左右,而且换热面积大,建设费用高,各国仍在积极探索中。

盐差能

盐差能是指海水和淡水之间或两种含盐浓度不同的海水之间的化学电压能,是以化学能形态出现的海洋能。主要存在与河海交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能中能量密度最大的一种可再生能源。

据估计,世界各河口区的盐差能达30TW,可能利用的有2.6TW。我国的盐差能估计为1.1×10^8kw,主要集中在各大江河的出海处,同时,我国青海省等地还有不少内陆盐湖可以利用。盐差能的研究以美国、以色列的研究为先,中国、瑞典日本等也开展了一些研究。但总体上,对盐差能这种新能源的研究还处于实验室实验水平,离示范应用还有较长的距离。

海流能

海流能是指海水流动的动能,主要是指海底水道和海峡中较为稳定的流动以及由于

潮汐导致的有规律的海水流动所产生的能量,是另一种以动能形态出现的海洋能。

海流能的利用方式主要是发电,其原理和风力发电相似。全世界海流能的理论估算值约为10^8kW量级。利用中国沿海130个水道、航门的各种观测及分析资料,计算统计获得中国沿海海流能的年平均功率理论值约为1.4X10^7kW。属于世界上功率密度最大的地区之一,其中辽宁省山东省浙江省福建省和台湾沿海的海流能较为丰富,不少水道的能量密度为15~30kW/m^2,具有良好的开发值。特别是浙江的舟山群岛的金塘、龟山和西候门水道,平均功率密度在20kW/m2以上,开发环境和条件很好。

海风能

近海风能是风能地球表面大量空气流动所产生的动能。在海洋上,风力比陆地上更加强劲,方向也更加单一,据专家估测,一台同样功率的海洋风电机在一年内的产电量,能比陆地风电机提高70%。风能发电的原理:风力作用在叶轮上,将动能转换成机械能,从而推动叶轮旋转,再通过增速机将旋转的速度提升,来促使发电机发电。我国近海风能资源是陆上风能资源的3倍,可开发和利用的风能储量有7.5亿kW。长江南澳岛之间的东南沿海及其岛屿是我国最大风能资源区以及风能资 源丰富区。资源丰富区有山东省辽东半岛黄海之滨,南澳岛以西的南海沿海、海南岛南海诸岛

海洋热能

海洋热能指由于海洋表层水体和深层水体温度差引起的热能。除了发电,海洋热能还可以用于海水脱盐、空调、和深海矿藏开发。

能源利用现状

上述不同形式的能量有的已被人类利用,有的已列入开发利用计划,但人们对海洋能的开发利用程度至今仍十分低。尽管这些海洋能资源之间存在着各种差异,但是也有着一些相同的特征。每种海洋能资源都具有相当大的能量通量:潮汐能和盐度梯度能大约为2TW;波浪能也在此量级上;而海洋热能至少要比此大两个数量级。但是这些能量分散在广阔的地理区域,因此实际上它们的能流密度相当低,而且这些资源中的大部分均蕴藏在远离用电中心区的海域。因此只能有一小部分海洋能资源能够得以开发利用

1、面临的问题

很多海洋能至今没被利用的原因主要有两方面:一,经济效益差,成本高。二,一些技术问题还没有过关。尽管如此,不少国家一面组织研究解决这些问题,一面在制定宏伟的海洋能利用规划。如法国计划到本世纪末利用潮汐能发电350亿千瓦时,英国准备修建一座100万千瓦的波浪能发电站,美国要在东海岸建造500座海洋热能发电站。从发展趋势来看,海洋能必将成为沿海国家,特别是发达的沿海国家的重要能源之一。

2、前景展望

全球海洋能的可再生量很大。根据联合国教科文组织1981年出版物的估计数字,五种海洋能理论上可再生的总量为766亿千瓦。其中温差能为400亿千瓦,盐差能为300亿千瓦,潮汐和波浪能各为30亿千瓦,海流能为6亿千瓦。但如上所述是难以实现把上述全部能量取出,设想只能利用较强的海流、潮汐和波浪;利用大降雨量地域的盐度差,而温差利用则受热机卡诺效率的限制。因此,估计技术上允许利用功率为64亿千瓦,其中盐差能30亿千瓦,温差能20亿千瓦,波浪能10亿千瓦,海流能3亿千瓦,潮汐能1亿千瓦(估计数字)。

海洋能的强度较常规能源为低。海水温差小,海面与500~1000米深层水之间的较大温差仅为20℃左右;潮汐、波浪水位差小,较大潮差仅7—10米,较大波高仅3米;潮流、海流速度小,较大流速仅4~7节。即使这样,在可再生能源中,海洋能仍具有可观的能流密度。以波浪能为例,每米海岸线平均波功率在最丰富的海域是50千瓦,一般的有5~6千瓦;后者相当于太阳能流密度1千瓦/米2)。又如潮流能,最高流速为3米/秒的舟山群岛潮流,在一个潮流周期的平均潮流功率达4.5千瓦/米2。海洋能作为自然能源是随时变化着的。但海洋是个庞大的蓄能库,将太阳能以及派生的风能等以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。海水温差、盐度差和海流都是较稳定的,24小时不间断,昼夜波动小,至少有季节性的变化。潮汐、潮流则作恒定的周期性变化,对大潮、小潮、涨潮、落潮、潮位、潮速、方向都可以准确预测。海浪是海洋中最不稳定的,有季节性、周期性,而且相邻周期也是变化的。但海浪是风浪和涌浪的总和,而涌浪源自辽阔海域持续时日的风能,不像当地太阳和风那样容易骤起骤止和受局部气象的影响。

海洋能的利用还很昂贵,以法国朗斯潮汐电站为例,其单位千瓦装机投资合1500美元(1980年价格),高出常规火电站。但在严重缺乏能源的沿海地区(包岛屿),把海洋能作为一种补充能源加以利用还是可取的。

参考资料

河南工人日报数字报